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Fluid–fluid displacement in porous media has been viewed through the lens of
Lenormand’s phase diagram since the late 1980s. This diagram suggests that the character
of the flow is controlled by two dimensionless parameters: the capillary number and
the viscosity ratio. It is by now well known, however, that the wettability of the system
plays a key role in determining the pore-scale displacement mechanisms and macroscopic
invasion patterns. Here, we endow Lenormand’s diagram with the impact of wettability
using dynamic and quasi-static pore-network models. By using the fractal dimension and
the ratio of characteristic viscous and capillary pressures we delineate the five principal
displacement regimes within the extended phase diagram: stable displacement, viscous
fingering, invasion percolation, cooperative pore filling and corner flow. We discuss
the results in the context of pattern formation, displacement-front dynamics, pore-scale
disorder and displacement efficiency.
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1. Introduction

Patterns form during fluid–fluid displacement in porous media in many natural and
industrial processes. As sand castles dry, air percolates into the sand matrix and the
integrity of the structure depends strongly on the resulting moisture distribution (Richefeu,
El Youssoufi & Radjaï 2006; Møller & Bonn 2007). In sugar processing, liquor-saturated
charcoal packs are periodically cleansed with water, where channelling of the water
phase is undesirable (Hill 1952). In refractory ceramics manufacturing, the ceramic
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Figure 1. (a) Lenormand’s phase diagram for a non-wetting fluid displacing a wetting fluid in a porous
medium. The displacement front advances through either viscous fingering, stable displacement or invasion
percolation, depending on the values of Ca and M. Adapted from Lenormand (1990); we endow Lenormand’s
phase diagram with wettability, characterized through angle θ : (b) θ > 90◦ in drainage and (c) θ < 90◦ in
imbibition.

matrix is infiltrated by molten metal, where a higher degree of infiltration leads to
more resilient ceramics (Léger, Weber & Mortensen 2015). In hydrocarbon recovery,
oil is produced by displacing it with water, and higher displacement efficiency is more
economically desirable (Datta, Ramakrishnan & Weitz 2014). Understanding morphology
of the displacement front during such processes is of great value.

Lenormand, Touboul & Zarcone (1988) presented a phase diagram (figure 1) to
characterize fluid–fluid displacement in a porous medium with two dimensionless
parameters: the mobility ratio M ≡ μi/μd and the capillary number Ca ≡ μiu/γ ; where
u is the characteristic velocity, γ is the interfacial tension, and μi and μd are the dynamic
viscosities of the invading and defending fluids, respectively. For high Ca, viscous forces
dominate over capillary forces. For M > 1 (favourable displacement) and high Ca, the
displacement front is viscously stable and the invading fluid sweeps the porous medium
compactly (Lenormand et al. 1988). For M < 1 (unfavourable displacement) and high Ca,
the displacement front is subject to the Saffman–Taylor instability (1958) and develops
a self-similar viscous-fingering pattern (Hill 1952; Van Meurs 1957; Chuoke, van Meurs
& van der Poel 1959; Paterson 1984; Chen & Wilkinson 1985; Måløy, Feder & Jøssang
1985; Homsy 1987; Feder et al. 1989; Hinrichsen et al. 1989; Meakin, Tolman & Blumen
1989; Ben Amar 1991a, b; Li et al. 2009; Patmonoaji et al. 2020). For low Ca, capillary
forces dominate over viscous forces and the displacement front advances via capillary
invasion regardless of M (Chandler et al. 1982; Wilkinson & Willemsen 1983; Lenormand
& Zarcone 1985).

The wetting properties of the fluid–fluid–solid system are not a part of the original
Lenormand et al. (1988) diagram, although the significance of wettability has been
acknowledged in Lenormand (1990). A number of studies have discussed the importance
of wettability at both high and low Ca (Stokes et al. 1986; Cieplak & Robbins 1988,
1990; Holtzman & Segre 2015; Trojer, Szulczewski & Juanes 2015; Jung et al. 2016;
Zhao, MacMinn & Juanes 2016; Odier et al. 2017; Singh et al. 2017; Primkulov et al.
2018, 2019; Zhao et al. 2019). Wettability can be characterized by the contact angle θ

at which the fluid–fluid interface meets the solid surface, measured from the invading
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Wettability and Lenormand’s diagram

fluid (figure 1b,c). For θ < 90◦, a more-wetting fluid displaces a less-wetting fluid and
the process is called imbibition; for θ > 90◦, a less-wetting fluid displaces a more-wetting
fluid and the process is called drainage. As the system transitions from strong drainage
to weak imbibition, the displacement becomes more compact: for high Ca and M < 1,
the viscous fingers become wider (Stokes et al. 1986; Trojer et al. 2015; Zhao et al.
2016); for low Ca and all M, the displacement patterns are very compact (Cieplak &
Robbins 1988, 1990; Trojer et al. 2015; Zhao et al. 2016; Primkulov et al. 2018). When
a capillary-dominated system (low Ca) is in strong imbibition, the displacement front
advances by preferentially filling crevices and corners in the pore space (corner flow)
(Levaché & Bartolo 2014; Zhao et al. 2016; Odier et al. 2017; Primkulov et al. 2018).

The invading fluid does not always displace the defending fluid completely from invaded
pores; corner flow is one such case. Another instance of incomplete displacement takes
place in strong drainage at high Ca (Park & Homsy 1984; Zhao et al. 2016, 2019). Here,
solid surfaces behind the displacement front remain coated with a film of defending fluid
(Bretherton 1961; Landau & Levich 1988; Zhao et al. 2016, 2019). The opposite happens
in strong imbibition for high Ca and M < 1: films of invading fluid advance on the solid
surfaces ahead of the bulk displacement front (Levaché & Bartolo 2014; Zhao et al. 2016;
Odier et al. 2017; Zhao et al. 2019).

Pore-network models are often used to simulate flow in porous media, as they are
both intuitive and computationally inexpensive (Fatt 1956; Blunt & Scher 1995; Celia,
Reeves & Ferrand 1995; Øren, Bakke & Arntzen 1998; Constantinides & Payatakes 2000;
Blunt 2001; Patzek 2001; Joekar-Niasar & Hassanizadeh 2012). The pore geometry in
such models is approximated by a network of nodes and links, and the flow within each
phase is assumed to be fully developed Poiseuille flow. The relatively low computational
cost of such models makes them ideal for exploring full the M–Ca–θ parameter space
required for extending the original Lenormand diagram. No study to date, pore network
or otherwise, has produced a three-dimensional (3-D) version of the Lenormand phase
diagram, capturing gradual wettability-induced changes in the displacement patterns.
The majority of pore-network studies have targeted only a limited range of wettability
conditions. While fluid–fluid displacement has been extensively studied in separate
sections of the M–Ca space in drainage (Chandler et al. 1982; Wilkinson & Willemsen
1983; Chen & Wilkinson 1985; Lenormand et al. 1988; Aker et al. 1998; Al-Gharbi
& Blunt 2005; Joekar-Niasar, Hassanizadeh & Dahle 2010; Gjennestad et al. 2018),
weak imbibition (Øren et al. 1998; Patzek 2001; Valvatne & Blunt 2004) and strong
imbibition with precursor wetting film flow through crevices and microroughness (Vizika,
Avraam & Payatakes 1994; Blunt & Scher 1995; Tzimas et al. 1997; Constantinides &
Payatakes 2000), only a few pore-network studies have explored the continuous transition
in displacement patterns due to changes in θ .

A substantial advance towards capturing continuous wettability-induced changes in
displacement patterns was made by Cieplak & Robbins (1988, 1990). Their model, which
was designed for a two-dimensional (2-D) porous medium comprised of a cylindrical
obstacle array, reproduced experimentally observed compaction of the invading fluid
as the system shifted from drainage to imbibition. This was done by introducing three
pore-scale invasion mechanisms – burst, touch and overlap – whose relative frequencies
shaped the displacement patterns at a given wettability. While this model was only valid
for vanishing injection rates, Holtzman & Segre (2015) extended it by including viscous
effects for M � 1. The model allowed capturing the experimentally observed stabilization
of fingering displacement patterns away from Ca → 0 (Trojer et al. 2015; Stokes et al.
1986).
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At the same time, both pore-network models fell short of capturing 3-D effects that
become important in strong imbibition. When θ < 45◦, the Laplace pressure of a wetting
fluid in the corner between a post and a plate can be negative. Therefore, a strongly wetting
invading fluid can advance predominantly through crevices between the top/bottom plates
and the cylindrical obstacles. We account for this 3-D mode of invasion by introducing a
corner-flow event to the quasi-static model of Cieplak and Robbins (Primkulov et al. 2018).
Specifically, we incorporate the corner flow event in the ‘moving capacitor’ framework
(Primkulov et al. 2019), where we treat local fluid–fluid interfaces within a micromodel
as analogues to capacitors in electrical circuits. Our approach in strong imbibition is
similar to models by Blunt & Scher (1995) and Constantinides & Payatakes (2000),
where displacement patterns are determined by competing flow through crevices and
pore centres. However, unlike the model of Blunt & Scher (1995), our model fully
accounts for viscous pressure gradients and is therefore not limited to small length scales.
Furthermore, our model does not preassign a distribution of microchannels like the work
of Constantinides & Payatakes (2000); instead, connectivity of the invading fluid through
crevices is determined by local micromodel geometry, and this connectivity evolves with
the sequence of corner flow events. Ours is the first pore-network model to capture the
continuous change in displacement patterns across all wettability conditions at arbitrary
Ca and M. This feature, along with its computational efficiency, allows for the conducting
of an extensive parameter sweep over the entirety of M–Ca–θ space. We utilize this model
to build the first picture of a 3-D version of Lenormand’s diagram, including an axis that
represents wettability.

Recent studies have made strides in this direction, but stopped short of producing the
full 3-D diagram. Holtzman & Segre (2015) outlined the changes in displacement patterns
within Ca–θ space for M � 1 using a pore-network model, excluding the possibility
of corner flow. Hu et al. (2018) subsequently used continuum simulations to explore
boundaries between viscous-dominated and capillary-dominated regimes for M ≈ 26.
This study was complemented by Lan et al. (2020), who used a dynamic pore-network
model to explore the interplay between wettability and Ca for M ≈ 3 × 10−3 which, like
the model of Holtzman & Segre (2015), neglected corner flow and was therefore limited
to θ > 45◦. The phase diagrams produced in these studies correspond to a set of partial
Ca–θ slices of the M–Ca–θ diagram we present in our manuscript.

In § 2, we present our ‘moving capacitor’ pore-network framework in detail (Primkulov
et al. 2019), which has been extended to all θ by incorporating corner flow events. Our
model is based on the analogy between flow in porous media and currents in electrical
circuits (Fatt 1956), and it treats the local fluid–fluid interfaces as a combination of
batteries and capacitors. The model builds on many existing ideas in the porous-media
community (Cieplak & Robbins 1988, 1990; Blunt & Scher 1995; Aker et al. 1998;
Constantinides & Payatakes 2000; Holtzman & Segre 2015; Primkulov et al. 2018,
2019) and combines them into a single framework that is able to handle M–Ca space
over all wettability conditions (0◦ < θ < 180◦). The model is built for the quasi-2-D,
paradigmatic case of randomly placed cylindrical pillars between the flat plates of a
Hele-Shaw cell. We use the model to explore the principal flow regimes of fluid–fluid
displacement in porous media (§ 3). We then discuss the crossover from capillary
invasion to viscous fingering under unfavourable displacement (M < 1) through pore-scale
event statistics, symmetry of the displacement front and autocorrelation of the flow
field (§ 4). Finally, we synthesize the results of over 7000 dynamic simulations into
an extension of Lenormand’s phase diagram that accounts for arbitrary wettability,
in § 5.
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2. Method

The model presented below builds on the analogy originally suggested by Fatt (1956), who
pointed to the similarities between flow of a single fluid through a porous medium and flow
of electrical current through a network of resistors. In this analogy, Ohm’s and Kirchhoff’s
laws of electricity are analogous to the Hagen–Poiseuille law and conservation of mass for
incompressible fluids, respectively. Therefore, resolving the viscous pressure drop due to
flow through a particular network of tubes is equivalent to resolving the potential drop
through an electrical circuit with identical topology.

This picture can be extended to two-phase flow by recognizing the similarities between
local fluid–fluid interfaces and electrical capacitors. Electrical capacitors are traditionally
used to store electrical charge: current builds up opposing charges across the capacitor
plates, resulting in a step-change in electrical potential across the capacitor. This potential
difference builds with current until a maximum is reached, which may result in dielectric
breakdown of the capacitor. Similarly, when one fluid displaces another within a porous
medium, the curvature of fluid–fluid interfaces increase as they advance into narrow
sections of the pore geometry (i.e. pore throats), corresponding to higher Laplace pressure
across the interface. Overcoming the maximum Laplace pressure (i.e. the capillary
entry pressure) results in rapid invasion of the pore space ahead. This invasion is
analogous to dielectric breakdown; however, unlike capacitors, the fluid–fluid interface
will subsequently find the nearest pore throat and start rebuilding the Laplace pressure
(thus curvature). We therefore refer to the model presented here as a ‘moving capacitor’
model.

We use the paradigmatic case of cylindrical obstacles in a Hele-Shaw cell as a quasi-2-D
porous medium (Cieplak & Robbins 1988, 1990; Holtzman & Segre 2015; Holtzman 2016;
Jung et al. 2016; Zhao et al. 2016; Primkulov et al. 2018, 2019; Borgman et al. 2019;
Hu et al. 2019). In this case, there is also an out-of-plane contribution to the Laplace
pressure that is analogous to a battery at the displacement front. This ‘battery’ represents
the overall affinity of the porous medium to the invading fluid. For a constant and uniform
gap between the plates, we assume that this out-of-plane curvature is fixed by the value of
the contact angle, and is positive in drainage and negative in imbibition. By doing so, we
neglect the effect of dynamic contact angle (Hoffman 1975; Voinov 1977; Cox 1986).

We organize the remainder of this discussion into three subsections. We begin
by explaining how we construct the pore network in § 2.1. Then, we discuss the
single-phase-flow model in § 2.2. Finally, we present the details of the two-phase-flow
model (i.e. the ‘moving capacitor’ model) in § 2.3.

2.1. Pore-network construction
Unless otherwise specified, simulations are conducted in the geometry of a benchmark
flow cell: a circular, patterned Hele-Shaw cell with a pore-throat size distribution that has
a mean of 665 μm and a standard deviation of 337 μm. The cell is 30 cm in diameter
and has a centred injection port. We set the gap between the two plates of our flow cell
to 100 μm. The benchmark flow geometry is constructed using MATLAB’s pdemesh tool
with meshing parameters tuned to match the pore-throat size distribution reported in Zhao
et al. (2016). In this construction, posts are centred at the nodes of the triangular mesh,
and their radii are set to 45 % of the length of the shortest adjacent edge.

Each mesh triangle represents a pore (figure 2a), so we can build the pore-network
incidence matrix (Strang 2007) by examining the adjacency of the triangles. We number
all pores and adopt the convention that pore connections are oriented in the direction
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Figure 2. Schematic of flow through a porous medium and the analogue electrical circuit for (a) single-phase
flow and (b) two-phase flow. Nodes of the electrical circuit correspond to pore centres. Viscous pressure drop
is analogous to potential drop through resistors, and fluid–fluid interfaces are analogous to a combination of
a capacitor and a battery. (c) Schematic of the dynamic pore-network model in strong imbibition (θ < 45◦),
where capacitors are placed at the fluid–fluid interfaces. Nodes are placed at pore and post centres; black,
orange and green edges correspond to pore-to-pore, post-to-post and pore-to-post edges, respectively.

of increasing pore number. As such, the incidence matrix of the network presented in
figure 2(a) is

A =
⎡
⎣−1 1 0 0

0 −1 1 0
−1 0 0 1

⎤
⎦ , (2.1)

where rows and columns of A represent edges and nodes, respectively. Here, 1 and −1
indicate entering and leaving the node, respectively. For example, edge 1 in (2.1) is directed
from node 1 to node 2.

We also make use of the diagonal conductance matrix C , whose elements are the
hydraulic conductivities of the network edges. The elements of C can be calculated as
c = πr4/8μL, assuming fully developed Hagen–Poiseuille flow through a rectangular tube
with hydraulic radius r and length L, which corresponds to pore-throat radius and the
distance between pore centres in a micromodel geometry, respectively.

2.2. Single-phase flow
The difference in potential across the network edges can be obtained from the incidence
matrix as e = −Ap (Strang 2007). Here, p is an array of node potentials, which in the
example of figure 2(a) would read as p = ( p1, p2, p3, p4)

T. The network currents can be
calculated from the potential difference as q = Ce, where the example of figure 2(a) would
have q = (q1, q2, q3)

T and

C =
⎡
⎣c1 0 0

0 c2 0
0 0 c3

⎤
⎦ . (2.2)

At the same time, currents must obey Kirchhoff’s current law (or mass conservation in
fluid flow), ATq = f , where f is the array of current sources at the nodes, and would read
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f = ( f , 0, 0, 0)T for the example in figure 2(a). After eliminating e, single-phase flow
through the network is captured by the following system of equations:

q = −CAp, (2.3)

ATq = f . (2.4)

Eliminating q, the node potentials are given by

p = −(ATCA)−1f . (2.5)

We set constant-flow boundary conditions at the inlet pores (at the centre of the flow cell)
and zero-pressure boundary conditions at the outlet pores (at the edges of the flow cell).

2.3. Two-phase flow: moving capacitors
To extend the model to two-phase flow, we take advantage of the analogy between a
capacitor and a fluid–fluid interface, where the drop in potential across the capacitor
plates is analogous to the Laplace pressure. Consider the network diagram in figure 2(b).
Initially, the capacitor is between nodes 1 and 2. As the current flows through the network,
the capacitor accumulates charge and the potential difference across its plates builds.
Capacitors with high accumulated potential difference hinder further flow, redirecting it
elsewhere. Once the capacitor is filled to its maximum capacity, we allow it to advance to
the next stable configuration at the neighbouring edges (between nodes 2 and 3).

Our previous work on quasi-static fluid–fluid displacement (Primkulov et al. 2018)
provides a framework for deciding how and when capacitors move. For any given
configuration of the fluid–fluid interface (capacitor locations), the quasi-static model
predicts both the critical Laplace pressures (�pcrit) and the type of interface instability.
The type of instability event (i.e. burst, touch, overlap or corner flow; see figure 3)
determines the next stable interface configuration (Cieplak & Robbins 1988, 1990;
Primkulov et al. 2018). The critical Laplace pressure for burst, touch and overlap events
can be written as

�pcrit = γ

(
1

rin
+ 1

rout

)
, (2.6)

where 1/rout = 2 cos θ/h is the out-of-plane curvature of the fluid–fluid interface and 1/rin
is the in-plane curvature that corresponds to either burst, touch or overlap configurations
(figure 3a–c). Burst events correspond to the highest stable in-plane curvature of the
interface between two posts (figure 3a). Touch events correspond to the interface coming
in contact with a nearby post (figure 3b). Overlap events occur when two neighbouring
interfaces coalesce within the pore space (figure 3c). When θ < 45◦, the invading fluid
tends to coat the corners between the posts and top/bottom plates. Corner-flow events
occur when the horizontal extent of such meniscus reaches the nearest uncoated post
(figure 3d). If these corner menisci instead overlap midpost, they form a capillary bridge
that expands spontaneously to the nearest post (figure 3e). The value of �pcrit for corner
flow and capillary bridge events is calculated from the total curvature of the meniscus
configurations depicted in figure 3(d,e). A more detailed description of all pore-scale
events is given in Primkulov et al. (2018).

We assume that the pressure drop across a capacitor at time t can be written as
�pcritΦ(t) + �pmin(1 − Φ(t)), where the filling ratio Φ(t) measures the fraction of the
throat filled with invading fluid (Holtzman & Segre 2015). A throat volume is defined
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Figure 3. (a) A burst event occurs when the interface pushes past its highest stable curvature. (b) A touch
event occurs when the interface touches the post ahead. (c) An overlap event occurs when two neighbouring
interfaces touch and coalesce, filling the pore cooperatively. (d) A corner-flow event occurs when a corner
meniscus touches and coats the neighbouring post. (e) A capillary-bridge event occurs when corner menisci
coalesce midpost before reaching the next post. ( f ) A sequence of interface configurations before and after
pore-invasion event at t = tevent in capillary-dominated displacement. Figure adapted from Primkulov et al.
(2018).

as 2rLh. We chose �pmin so that it is equal to the smallest value of �pcrit minus the
standard deviation of �pcrit within the network. This choice ensures that all menisci have
the same Laplace pressure when corresponding throats are empty. Taking into account
the direction of the edges (an array d(t) consisting of 1 and −1 for edges directed
towards and away from the defending fluid, respectively), the total pressure drop across the
network edges can be written as e = b − Ap, where non-zero components of pressure drop
array b(t) are written as −d(t)[�pcritΦ(t) + �pmin(1 − Φ(t))]. Therefore, the equations
governing two-phase flow through the network are[

C−1(t) A
AT 0

] [
q(t)
p(t)

]
=

[
b(t)

f

]
. (2.7)

We now discuss the time-stepping method in our two-phase flow model. After we
initialize the interface locations within the ‘circuit’, we use adaptive forward Euler
time-stepping to update the filling ratios of the network edges at the interface, Φ(t). We
ensure that no pore throat is filled in a single time step (Aker et al. 1998). After every
time step, we use the effective viscosity (Aker et al. 1998; Holtzman & Segre 2015)
μ = μiΦ(t) + μd(1 − Φ(t)) to update the conductivity matrix C(t) and resolve the flow
via (2.7) with updated pressure drops across capacitors.

Whenever we encounter a time step (�t) where one of the components of Φ(t) is
greater than one, we repeat the time step with an adjusted �t until the unstable edge is
exactly filled. Then, we remove the filled capacitor and replace it with empty capacitors
at locations based on the type of instability that the quasi-static model outputs for
the corresponding network edge (Primkulov et al. 2018). Newly added capacitors are
initialized with Φ = 0 and accumulate potential drop as the above steps are repeated.

The typical solution of (2.7) in capillary-dominated regime produces the invasion
sequence depicted in figure 3( f ), which can be separated into three steps: (i) interface
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curvatures build slowly across the displacement front (t < tevent); (ii) one of the interfaces
reaches a ‘burst’, ‘touch’ or ‘overlap’ configuration, and the corresponding pore is
instantaneously invaded with new interfaces having zero in-plane curvature and Φ (t =
tevent); and (iii) the invading fluid redistributes to equalize the Laplace pressures at the
displacement front (t > tevent). The displacement front spends the majority of its time in
step (i). Since capturing the short-time dynamics of invasion events (e.g. Haines 1930) was
not the primary objective of this work, we chose to make step (ii) instantaneous, and chose
a relatively coarse �t, with (iii) taking up only a few time steps between pore-invasion
events. As a result, having Φ = 0 correspond to zero in-plane curvature (our model)
and having Φ = 0 correspond to a negative in-plane curvature (expected experimentally)
would only make an appreciable difference in the short-time-scale dynamics, which is
outside the scope of interest of this study. Indeed, it is likely that a fully resolved model of
the interface at the pore level is needed to capture these short-time-scale dynamics.

While our model of two-phase flow allows for re-emptying of network edges at the
interface (figure 3f ), our current implementation prohibits instability events in the reverse
direction for simplicity of bookkeeping.

2.4. Moving-capacitor model in strong imbibition
When θ < 45◦, the total curvature of a corner meniscus (figure 3d,e) can be negative. This
means that at some θ < 45◦, invading fluid may advance by coating post corners instead of
filling pore volumes. This was demonstrated in the strong imbibition experiments of Zhao
et al. (2016). Our treatment of strong imbibition fits naturally into the two-phase model
described above, where the lowest �pcrit corresponds to either corner flow (figure 3d) or a
capillary bridge event (figure 3e). Below, we highlight a few distinguishing features of the
‘moving capacitor’ model for θ < 45◦.

The overall flow network accounts for three distinct components: (i) a pore network,
where nodes are pore centres and edges are pore-to-pore channels (black network in
figure 2c); (ii) a post corner network, where nodes are placed at the centres of posts
and edges are post-to-post connections (orange network in figure 2c); and (iii) a network
connecting post centres to pore centres (green network in figure 2c).

Hydraulic radii of post-to-post and pore-to-post connections are taken as twice the ratio
of channel cross-sectional area to its wetted perimeter, which are calculated from the shape
of the corner meniscus at its critical Laplace pressure (figure 3d,e). Volume assigned to a
corner meniscus is defined to be 2πrpostπr2

hydr, where rpost and rhydr are radius of the post
and hydraulic radius of the meniscus, respectively.

In post-to-post and pore-to-post capacitors, the value of Φ is assigned to a post, so that
capacitors belonging to the same post have identical Laplace pressures at any given time.
When a new post is coated, only one capacitor is removed from the network, the capacitor
at the post-to-post connection (figure 2c), and new capacitors are added at the fluid–fluid
boundaries of the new post.

Another distinction between the model we present here from the original ‘moving
capacitor’ model is that the corner events depicted in figure 3(d,e) can trigger pore
invasion. The volume of each pore in our network is bounded by three posts. Therefore,
if all three posts experience corner events, the oil phase within the pore space pinches off
and pore gets filled with invading fluid (Odier et al. 2017).

Finally, our model assumes perfectly smooth surfaces and leaves out the role that surface
roughness, dynamic contact angle and potential precursor films may play in the fluid–fluid
displacement experiments. While our model on this idealized substrate predicts no corner
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flow when h = 100 μm (Primkulov et al. 2018), experiments detect the onset of corner
flow for θ somewhere between 7◦ and 60◦ (Zhao et al. 2016). This discrepancy between
experiment and the model is reconciled through a fitting parameter that we discuss in detail
in Appendix A.

3. Principal flow regimes

We begin our discussion by exploring the five principal regimes of fluid–fluid
displacement in porous media: (i) viscous fingering; (ii) stable displacement; (iii) invasion
percolation; (iv) cooperative pore filling; and (v) corner flow. We anchor our discussion of
principal flow regimes around a few key metrics that help to characterize and distinguish
the regimes.

(i) Fractal dimension Df is a measure of how a pattern fills the space in which it is
embedded. For a 2-D pattern, Df varies between 1 (for a line) and 2 (for a compact
object). We calculate Df with the box-counting method (Kenkel & Walker 1996).
Following this method, we tile our flow patterns with boxes of size ε and count the
number of boxes N of that size needed to cover the pattern. We repeat this process
for a sequence of ε and take Df to be the slope of N against ε on a log–log plot (see
Primkulov et al. (2018) for more details).

(ii) Finger width w/a is the ratio of mean finger width to mean pore size. We estimate
w/a following a scheme detailed in Primkulov et al. (2018), which is an adaptation
of an approach by Cieplak & Robbins (1988, 1990). Briefly, we divide our images
into slices and record the mean size w of one-dimensional clusters containing the
pattern. We repeat the same process for an image where we treat the entire pore
space as a pattern and record the mean pore throat size as a.

(iii) Modified capillary number (Ca∗) measures the fraction of characteristic viscous to
capillary pressures in our setup. We take

Ca∗ = �pvisc

�pcap
= max(Ca, Ca/M)

|�pcrit|
γ R
ah

, (3.1)

after expanding the characteristic pressure drop as �pvisc = max(μi, μd)uR/ah,
where R is the radius of the Hele-Shaw cell. The term max(Ca, Ca/M) ensures
that the greater viscous forces are taken into account, and the magnitude of critical
Laplace pressure |�pcrit| is taken directly from simulations.

All of these metrics are time dependent. We evaluate Df and w/a at the moment of
breakthrough, when the invading fluid first reaches the outer boundary of the flow cell.
The characteristic velocity u used in calculating Ca and Ca∗ is taken as Q/2πrmin, where
rmin is the radial distance of the post closest to centre of the Hele-Shaw cell. Additionally,
we define a directional flow rate as the mean flow rate along different directions of the
radial flow cell. We do so by dividing the flow cell into 10◦ sectors and calculating the
mean flow rate for each sector as time progresses.

3.1. Stable displacement (Df = 1.93, w/a = 37, Ca∗ > 1)
When a more viscous fluid displaces a less viscous fluid (M > 1), the displacement
front is hydrodynamically stable (Saffman & Taylor 1958) because viscous forces smooth
perturbations.

Simulations at M = 103, Ca = 10−1, θ ∈ [46◦, 180◦] produce nearly perfectly circular
patterns (figure 4). The injection pressure increases as the displacement progresses

923 A34-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.579


Wettability and Lenormand’s diagram

500

400

300

200

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1

q/max(q) (p – min( p))/(max( p) – min( p))
0 1 0 1

t/tb

t/tb

t/tb

Normalized

directional flow rate

0 1

1.0

0.5

0.2

0.4

0.6

0.8

1.0 –π

–π/2

π/2

0

D
ir

ec
ti
on

 a
ng

le
 (

ra
d)

N
o
rm

al
iz

ed

d
ir

ec
ti

o
n
al

 f
lo

w
 r

at
e

p 
(k

P
a)

(a)

(b) (c) (d )

(e)

Figure 4. Stable displacement in the benchmark geometry for Ca = 10−1, M = 103 and θ = 170◦: (a) the
injection pressure increases monotonically (tb is the breakthrough time); (b) flow rates within the network
show radial symmetry and radially decreasing intensity (max(q) is the largest local flow rate at given t);
(c) pore-invasion times reflect the radial symmetry in pattern growth; (d) pore-pressure distribution, where
pressure gradients are significant only in the invading fluid (max(p) is the largest local pressure at given t); and
(e) the evolution of the directional flow rate is indicative of continuous compact flow, where apparent ridges
are artefacts due to discrete pore throats with high flow rates near the cell centre.

(figure 4a), with most of the pressure drop taking place in the invading fluid (figure 4d).
The flow rate is radially symmetric, decreasing with radius (figure 4b,e) and pattern
symmetry is maintained throughout (figure 4c).

3.2. Viscous fingering (Df = 1.63, w/a = 2.1, Ca∗ > 1)
Stable displacement is often desirable, but not always attainable in industrial applications
such as oil recovery (Chuoke et al. 1959) and sugar processing (Hill 1952). Viscous fingers
develop under potential flow when a less-viscous fluid displaces a more viscous one
(M < 1).

In figure 5, we highlight the signatures of viscous fingering for the benchmark pore
geometry. The simulation in figure 5 is conducted for Ca = 10−1, M = 10−3, θ = 170◦.
As the displacement advances, the injection pressure decreases (figure 5a) because the
majority of the pressure drop takes place in the defending fluid (figure 5d). Although
the pressure appears to decrease smoothly in time, removing the global trend from the
signal would expose fluctuations due to intermittent activity at the displacement front
(Primkulov et al. 2019). As the fingers develop and grow, they focus the flow along
their main branches (figure 5b,e). The displacement pattern remains radially symmetric
throughout (figure 5c). In fact, the diffusive signature of the pressure field in the defending
fluid is what generates the striking similarity between viscous fingering and other patterns
in nature, such as diffusion-limited aggregation (known as DLA) (Meakin et al. 1989),
dielectric breakdown of materials (Niemeyer, Pietronero & Wiesmann 1984) and spreading
of fire fronts (Conti & Marconi 2010). The diffusive pressure field arises from Darcy flow
and incompressibility, which lead to ∇2p = 0 in the defending fluid, which is identical to
the diffusive solute concentration field in diffusion-limited aggregation (Paterson 1984).
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Figure 5. Viscous fingering in the benchmark geometry for Ca = 10−1, M = 10−3 and θ = 170◦: (a) the
injection pressure decreases monotonically in time (tb is the breakthrough time); (b) flow rates within the
network are pronounced along the main branches of the viscous fingers (max(q) is the largest local flow rate at
given t); (c) pore-invasion times reflect the radial symmetry in pattern growth; (d) pore-pressure distribution,
where most pressure changes occur within the defending fluid (max(p) is the largest local pressure at given
t); and (e) the evolution of the directional flow rate shows persistent (rather than sporadic) growth of viscous
fingers.

3.3. Invasion percolation (Df = 1.8, w/a = 3, Ca∗ < 1)
When the invading fluid advances very slowly and viscous forces are negligible (Ca → 0),
the flow is governed exclusively by capillary forces. In drainage (θ > 90◦), the invading
fluid advances mainly through burst events and the flow is well captured by the invasion
percolation model (Chandler et al. 1982; Wilkinson & Willemsen 1983; Lenormand &
Zarcone 1985).

We explore the characteristics of invasion percolation by simulating fluid–fluid
displacement at Ca = 10−7, M = 1, and θ = 170◦ on the benchmark pore geometry
(figure 6). The pressure distribution in the invasion percolation regime is spatially uniform
within each fluid (figure 6d), with the two fluid pressures differing by the Laplace pressure.
As the displacement front advances, the pressure in the invading fluid is modulated by the
sequence of lowest capillary entry pressures, and fluctuates sharply (figure 6a) (Måløy
et al. 1992; Furuberg, Måløy & Feder 1996). This intermittency is also reflected in the
flow field: only a small fraction of the pore space is active at any given time (figure 6b),
and the flow direction changes frequently (figure 6e). As a result, the emerging flow pattern
lacks radial symmetry throughout the displacement, with invasion-time patches reflecting
invasion avalanches (figure 6c).

3.4. Cooperative pore filling (Df = 1.93, w/a = 15, Ca∗ < 1)
Cooperative pore filling is a capillary-dominated regime that produces compact
displacement patterns. Although cooperative pore filling can take place in viscous
flow regimes, they are most prominent in weak imbibition and can dominate the
displacement pattern when viscous forces are small. During cooperative pore filling,
the displacement front advances mainly through overlap and touch events (see § 2), and
the increased fraction of overlap events smoothens the displacement front (Cieplak &
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Figure 6. Invasion percolation in the benchmark geometry for Ca = 10−7, M = 1 and θ = 170◦: (a) the
injection pressure fluctuates sharply due to pore-invasion events (tb is the breakthrough time); (b) flow rates
within the network are very localized, only a small fraction of the pore space is hydrodynamically active at
any given time (max(q) is the largest local flow rate at given t); (c) pore-invasion times show asymmetric pore
invasion clusters; (d) the pore-pressure distribution is uniform within each fluid (max(p) is the largest local
pressure at given t); and (e) the evolution of the directional flow rate shows intermittency in flow direction.

Robbins 1988, 1990; Holtzman & Segre 2015; Primkulov et al. 2018). As a result,
the displacement front sweeps the defending fluid completely, producing compact
displacement patterns (figure 7).

Cooperative pore-filling simulations on the benchmark pore geometry at Ca = 10−7,
M = 1 and θ = 46◦ (figure 7) show many similarities to invasion percolation (§ 3.3).
The pressure is uniform in each fluid phase (figure 7d), but exhibits sharp fluctuations
in time (figure 7a). The flow field is highly intermittent (figure 7e), with only a small
fraction of pores active at any given moment (figure 7b). This intermittency results in
asymmetric and patch-like growth of the displacement pattern (figure 7c). Unlike invasion
percolation, cooperative pore filling produces compact displacement patterns with no
trapped patches of defending fluid. The difference stems from the nature of pore-scale
invasion events: invasion percolation is dominated by burst events while cooperative pore
filling is dominated by overlap and touch events (Cieplak & Robbins 1988, 1990; Holtzman
& Segre 2015; Primkulov et al. 2018).

3.5. Corner flow (Df = 1.54, w/a = 0.8, Ca∗ < 1)
In strong imbibition, the invading fluid no longer advances by filling the pores completely
– instead, the invading fluid advances mainly through corner-flow events where it coats the
corners at the intersection of posts with the top and bottom plates of the Hele-Shaw cell
(figure 2c).

Figure 8 explores corner flow through simulations at Ca = 5 × 10−7, M = 0.1 and
θ = 4◦ on the benchmark pore geometry. Corner flow shares many similarities with
other capillary-dominated regimes. The spatial distribution of pressure is uniform within
each fluid (figure 8d), while the injection pressure shows intermittency characteristic of
capillary-dominated displacements (figure 8a). Only a small fraction of the pore space
has appreciable flow (figure 8b), and flow changes direction frequently (figure 8e). The
resulting pattern grows asymmetrically throughout the displacement (figure 8c).
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Figure 7. Cooperative pore filling in the benchmark geometry for Ca = 10−7, M = 1 and θ = 46◦: (a) the
injection pressure is highly intermittent (tb is the breakthrough time); (b) flow rates within the network are
localized, and only a small fraction of them have appreciable flow; (c) pore-invasion times reveal pore-invasion
clusters (max(q) is the largest local flow rate at given t); (d) the pore-pressure distribution is uniform within
each fluid phase (max(p) is the largest local pressure at given t); and (e) the evolution of the directional flow
rate shows a high degree of intermittency in the flow direction.
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Figure 8. Corner flow in the benchmark geometry for Ca = 5 × 10−7, M = 0.1 and θ = 4◦: (a) the injection
pressure is highly intermittent (tb is the breakthrough time); (b) flow rates within the network are localized,
and only a small fraction of them have appreciable flow (max(q) is the largest local flow rate at given t);
(c) pore-invasion times show radial asymmetry; (d) the pore-pressure distribution is uniform within each fluid
phase (max(p) is the largest local pressure at given t); and (e) the evolution of the directional flow rate shows a
high degree of intermittency in the flow direction.

4. Crossover from viscous-dominated to capillary-dominated flow

We examine the difference in the invasion dynamics between high and low Ca through
the spatial and temporal distributions of pore-invasion events. In this section, we focus
on unfavourable viscosity contrast displacement, M = 1/340 (Zhao et al. 2016, 2019).
The effective ratio of viscous to capillary forces is therefore Ca/M, which we use in this
section. Figure 9(a) shows histograms of the Euclidean distance �s between consecutive
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Figure 9. (a) Histogram of the distance (�s) between consecutive pore-invasion events. (b) Median time
(�tinv) between consecutive pore-invasion events as a function of θ . (c) Spatio-temporal autocorrelation
of the normalized directional flow rate fields for θ = 46◦. (d–f ) Temporal evolution of the normalized
directional-flow-rate fields for θ = 46◦ and (d) Ca/M = 10−3, (e) Ca/M = 10−6, ( f ) Ca/M = 10−7. The plots
are complemented with the pore invasion time diagrams (insets).

pore-invasion events. The distribution of �s indicates that consecutive pore-invasion
events are significantly more likely to take place near each other for low Ca/M than
for high Ca/M. Furthermore, the time �tinv between consecutive pore-invasion events
at Ca/M = 10−7 shows that the median �tinv increases as θ → 46◦ (figure 9b). As the
wettability of the substrate changes from strong drainage to weak imbibition, the relative
frequency of cooperative pore-filling events increases (Cieplak & Robbins 1990, 1988;
Primkulov et al. 2018). The increase in �tinv is chiefly due to the increase in relative
frequency of overlap events, which result in rapid invasion of several neighbouring pores.
This in turn leads to significant retraction of the invading fluid from all of the throats at
the displacement front. Thus, more time is needed to refill the pores at the displacement
front, which results in the steady increase in �tinv as θ decreases (figure 9b).

The velocity distribution within the porous medium is also strikingly different at low
and high Ca/M. We plot the temporal evolution of the directional flow rate for θ = 46◦
in figure 9(d–f ). At Ca/M = 10−3, the invading fluid forms high velocity flow channels
that persist until breakthrough (figure 9d). The pressure gradients in the defending
fluid dominate the dynamics, and the invading fluid flows through growing viscous
fingers. The displacement front advances with strong radial symmetry (figure 9d), as
observed experimentally (Måløy et al. 1985; Løvoll et al. 2004; Holtzman, Szulczewski &
Juanes 2012). As Ca/M decreases (figure 9e, f ), the front velocity becomes increasingly
intermittent. The pressure gradients within the fluids are negligible, and the pressure
changes in the network are due almost exclusively to the Laplace pressure at the
displacement front. Only portions of the displacement front are active at any given time
(Ferer et al. 2004; Holtzman et al. 2012), and the front advances in asymmetric patches
(figure 9e, f ).

This transition from viscous-dominated to capillary-dominated flow can be quantified
through the spatio-temporal autocorrelation of the normalized directional flow rate
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Figure 10. Evolution of Df in M–Ca–θ space. Slices of the simulation data in (a) drainage, (b) weak imbibition
and (c) strong imbibition. (d) The maroon isosurface corresponding to Df = 1.92 is used to draw the boundary
between compact and non-compact displacement patterns. The black lines are the intersections of the isosurface
with the cross-sections.

(figure 9c). The autocorrelation is calculated as C(α, τ ) = 〈q(α, t)q(α, t + τ)〉/〈q(α, t)
q(α, t)〉, where 〈·〉 indicates the ensemble average over time, α is the direction and τ is
the time separation between the directional flow rate profiles. The average of C(α, τ ) over
all α is shown in figure 9(c) for θ = 46◦. The flow field becomes increasingly uncorrelated
at low Ca/M, with a qualitative transition taking place below Ca/M = 10−5.

5. Extending Lenormand’s phase diagram

We extend Lenormand’s diagram by simulating fluid–fluid displacement over a wide range
of θ , Ca, M on the benchmark pore geometry (7560 simulations in total). This thorough
sweep of the parameter space is possible due to the relatively low computational cost of our
model. For each simulation, we measure Df , w/a and Ca∗ at the moment of breakthrough.
We use these variables to delineate regions corresponding to the different principal flow
regimes.

First, we use the fractal dimension Df to separate compact patterns from non-compact
patterns. Compact patterns include stable displacement and cooperative pore filling, both
of which have Df > 1.92 (maroon isosurface in figure 10d). A threshold based on w/a
provides similar results (not shown).

Next, we use Ca∗ to separate viscous-dominated flow regions (stable displacement
and viscous fingering) from capillary-dominated flow regions (cooperative pore filling,
invasion percolation and corner flow). The surface resulting from Ca∗ = 1 in (3.1) is
depicted in figure 11 in dark grey: the space above this surface is viscous-dominated, the
space below it is capillary-dominated. The crease on the Ca∗ = 1 surface originates from
a vanishing out-of-plane contribution to Laplace pressure near θ = 90◦.

The combination of the maroon and grey isosurfaces from figures 10 and 11 is sufficient
for delineating the principal flow regimes as follows.

(i) Invasion percolation is capillary dominated (Ca∗ < 1) and non-compact (Df <

1.92).
(ii) Cooperative pore filling is capillary dominated (Ca∗ < 1) and compact (Df > 1.92).

(iii) Corner flow is capillary dominated (Ca∗ < 1) and non-compact (Df < 1.92).
(iv) Viscous fingering is viscous dominated (Ca∗ > 1) and non-compact (Df < 1.92).
(v) Stable displacement is viscous dominated (Ca∗ > 1) and compact (Df > 1.92).

Although we use sharp boundaries to outline regions that belong to different flow
regimes, the transitions from one regime to another are smooth, as is evident from the
cross-section images in figures 10 and 11.
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Figure 11. Viscous-dominated and capillary-dominated regions of M–Ca–θ space are separated by setting
Ca∗ = 1 in (3.1). This is depicted with a dark grey surface in this figure.

Our extension of Lenormand’s diagram with added wettability axis is presented in
figure 12. Our model faithfully reproduces the original diagram in drainage (cross-section
θ = 180◦ in figure 12), but reveals a more complete picture of the fluid–fluid displacement
in porous media by augmenting the phase diagram with a wettability (θ ) axis.

To assess the influence of pore-scale disorder on the displacement pattern, we run
simulations on a pore geometry in which we can precisely define, and tune, the degree
of geometric variability among realizations. To do so, we generate a regular triangular
lattice with 2.8 mm spacing between vertices and place posts on its vertices. The radii of
the posts are drawn from a uniform distribution (r0 − ξrv, r0 + ξrv), where r0 = 1100 μm
and rv = 300 μm are selected to match the mean post size of the benchmark geometry and
ξ ∈ [0, 1] is the index of disorder. When ξ = 0, the medium is ordered and anisotropic;
when ξ = 1, the medium is disordered and isotropic. As demonstrated in Appendix B, the
values of Df and w/a do not change significantly with the degree of disorder ξ . Therefore,
although the data in figure 12 were collected from simulations on a single benchmark pore
geometry, the results apply generally to porous media with varying degree of disorder.
The capillary-dominated region of the phase diagram (Ca∗ < 1) is divided into invasion
percolation, cooperative pore filling and corner flow. The boundary between compact and
non-compact flow in the capillary-dominated region of figure 12 changes significantly with
Ca: the upper and lower bounds (in θ ) of the cooperative pore filling region move apart as
Ca approaches the grey surface. When M > 1, viscous forces stabilize the displacement
front and aid cooperative pore filling events in making the patterns more compact (Hu
et al. 2018).

The shape of the extended Lenormand diagram can be inferred outside the M–Ca–θ

parameter space probed with the ‘moving capacitor’ model in figure 12. In particular, the
cooperative pore filling region extends farther into the M < 1 region as Ca decreases.
This is evident from the quasi-static limit of the model, where cooperative pore filling
boundaries are independent of M.

The extended Lenormand diagram in figure 12 is generated for a single pore geometry.
While the overall shape of the diagram is expected to hold across different micromodels
with a wide range of pore-scale disorder, spacing between the posts and gap thickness
h, the boundaries between the principal flow regimes are likely to shift depending on
the pore structure. For example, increasing the spacing between the post centres would
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Figure 12. Extended Lenormand diagram constructed using Ca∗ and Df phase boundaries from figures 10 and
11 to separate the five principal flow regimes within the M–Ca–θ parameter space: viscous fingering, stable
displacement, invasion percolation and cooperative pore filling. Results from the ‘moving capacitor’ model
are complemented with results from the quasi-static model that allows inferring the extent of cooperative pore
filling in the limit Ca → 0.

bring the onset of cooperative pore filling to higher θ (Primkulov et al. 2018). Larger
spacing between the posts would also make corner flow less dominant in strong imbibition,
as higher critical pressures would be needed to coat post corners. Therefore, compact
displacement would occupy a greater proportion of the overall space in figure 12. The
degree of disorder is also known to roughen the displacement front and shift the boundary
between invasion percolation and viscous fingering (Holtzman & Juanes 2010; Holtzman
2016; Hu et al. 2019). Given that the pore geometry used in figure 12 is similar to
one with ξ = 0.99 in Appendix B, a pore space with smaller degree of disorder would
make compact displacement more favourable, which in turn would enlarge the compact
displacement region in figure 12 (stable displacement and cooperative pore filling).

One should not think of the boundaries between the principal flow regimes in figure 12
as sharp, because transitions from one regime to another are gradual. Regions of the
M–θ–Ca space near the maroon and grey boundaries correspond to crossover zones
between principal flow regimes.
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Figure 13. A sketch of Lenormand’s phase diagram in (a) strong drainage, (b) weak imbibition and
(c) strong imbibition. The darker shades in strong imbibition represent partial pore-scale displacement. Art
credit: Kamilla Omarova.

We summarize the findings from our comprehensive study with a schematic (figure 13).
The classic phase diagram of Lenormand was developed for strong drainage (figure 13a),
where displacement patterns advance through either viscous fingering, stable displacement
or invasion percolation. This diagram undergoes a qualitative change when the system
moves to weak imbibition (figure 13b), in which viscous fingers become significantly wider
and invasion percolation is replaced by cooperative pore filling. Therefore, the majority of
the M–Ca space leads to compact displacement patterns. Strong imbibition has only been
sparsely studied (Zhao et al. 2016; Odier et al. 2017; Primkulov et al. 2018), but enough is
known to outline the main modes of displacement (figure 13c). The displacement patterns
advance through corner flow at low Ca, where the injected fluid occupies only a fraction
of the pore space (denoted by darker shades in figure 13c). This mode of displacement has
been explored experimentally by Zhao et al. (2016) and Odier et al. (2017), and numerically
in the quasi-static limit (Primkulov et al. 2018). The invasion pattern advances through
thin films on the solid surface for high Ca and M < 1 (Levaché & Bartolo 2014), while
maintaining the viscous fingering morphology (Zhao et al. 2016).

The simulations in figure 12 reproduce many experimental observations. First, as θ

changes from 180◦ to 46◦, displacement patterns change from invasion percolation to
cooperative pore filling (Trojer et al. 2015; Zhao et al. 2016), and finger width increases
in the viscous-fingering region of the diagram (Stokes et al. 1986; Trojer et al. 2015;
Zhao et al. 2016). Second, the injection pressure fluctuates sharply in capillary-dominated
regimes (Måløy et al. 1992; Furuberg et al. 1996), but instead varies monotonically
with time in viscous-dominated regimes. Third, the model naturally reproduces the
intermittent flow that is modulated by pore disorder in capillary-dominated flow. Finally,
the model reproduces the interplay between imposed ordered post lattice and the flow
morphology: snow flake patterns in viscous fingering (Chen & Wilkinson 1985; Chen
1987), regular crystal-growth morphology in cooperative pore filling regime (Lenormand
1990), perfect circles in stable displacement and disordered morphology in invasion
percolation (Wilkinson & Willemsen 1983; Lenormand & Zarcone 1985; Måløy et al.
1992).

While our ‘moving capacitor’ model is successful in reproducing the dynamics of the
principal flow regimes (figure 13), it assumes piston-like displacement for burst, touch
and overlap events. As a result, the model overestimates the invading fluid saturation
at high Ca, as pointed out by Zhao et al. (2019). Strong drainage and high Ca features
residual films of defending fluid (Bretherton 1961; Zhao et al. 2016). In strong imbibition,
invading fluid films dominate the displacement patterns in viscous fingering and corner

923 A34-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.579


B.K. Primkulov and others

flow regimes (Levaché & Bartolo 2014; Zhao et al. 2016; Odier et al. 2017). These regimes
are captured more naturally through pore-scale 3-D continuum models (Zhao et al. 2019),
which are unfortunately still prohibitively expensive for populating significant portions of
the M–Ca–θ parameter space in Lenormand’s diagram (figure 12).

6. Conclusion

We have presented the results of a ‘moving capacitor’ dynamic pore-network model that
is able to reproduce the full M–Ca space of Lenormand’s phase diagram and extend
it with a third dimension θ , thus accounting for the system’s wettability. The model
captures the pressure and flow within the porous medium, and our analysis of the
model results shows the contrast in pore-scale dynamics between viscous-dominated and
capillary-dominated flow through pore-invasion-event statistics and autocorrelation of the
velocity field. The ‘moving capacitor’ model provides a single framework that captures
the dynamics of fluid–fluid displacement in micromodels across an unprecedented span of
M–Ca–θ parameters. The model cannot be directly applied to generic porous materials
with complex shapes or hierarchical geometries. However, in the spirit of Lenormand
et al. (1988) and Cieplak & Robbins (1988), here we studied a simpler pore geometry
in order to learn something general about two-phase displacement in more complex
porous media. We use our model to build the first 3-D version of Lenormand’s phase
diagram with wettability as the third axis, whose general shape we expect to hold for
more complex 3-D porous materials. We demonstrate that cooperative pore filling can
occupy a significant portion of M–Ca–θ space, and that two metrics – the classical fractal
dimension and modified capillary number Ca∗ – are sufficient for delineating the five
principal displacement regimes. One can use the diagram to design efficient fluid–fluid
displacement in disordered porous media. Furthermore, the ‘moving capacitor’ model used
in this work enables modelling multiphase flow in deformable granular media (movable
posts) (Jain & Juanes 2009; Sandnes et al. 2011; Lee et al. 2020), while accounting for
the wettability effects, when combined with discrete element method (known as DEM)
models (Meng et al. 2020).
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Appendix A. Fitting parameter for corner flow

A.1. Ideal system
We first highlight how changes in h – the height of posts within our micromodel – impact
the onset of corner flow. This has been explored in earlier work (Primkulov et al. 2018),
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Figure 14. Transition to corner-flow regime as a function of post height h. Decreasing h narrows the range of
θ where corner flow dominates.

but we include it here for completeness. We examine the transition to corner flow
in the quasi-static limit, where we set the outer radius of the micromodel to
15 cm.

The out-of-plane contribution to Laplace pressure for burst, touch and overlap events is
a function of h and reads as −γ cos θ/h/2. Therefore, the total Laplace pressure of burst,
touch and overlap decreases with decreasing h. In contrast, the critical Laplace pressure of
a corner-flow event is independent of h (Primkulov et al. 2018). In capillary-dominated
displacement, events with lowest critical Laplace pressure take precedence. Therefore,
the onset of corner flow depends on h. The impact of h on the onset of corner flow at
Ca = 0 is summarized in figure 14. When the posts are infinitely tall (h → ∞), the mode
of fluid–fluid displacement changes smoothly from invasion percolation to cooperative
pore filling and then sharply to corner flow as wettability conditions change from drainage
to weak and then strong imbibition. For h → ∞, θ = 39◦ marks the onset of corner flow.
Decreasing the value of h moves the onset of corner flow towards lower θ , until corner
flow disappears altogether. Corner flow does not take place when h = 100 μm in our
micromodel.

Alternatively, one can shift the onset of corner flow by changing the spacing between
the posts: narrower spacing would trigger corner flow at higher θ . The Laplace pressure
of a corner meniscus is a monotonically increasing function of its size: it increases
from −∞ to �pcrit as the meniscus volume increases from zero to its critical volume
(figure 3d). Therefore, smaller spacing between the posts lowers critical Laplace pressures
for corner-flow events and shifts the onset of corner flow to higher θ . The changes in
the spacing between the posts would also shift the transition from invasion percolation to
cooperative filling (Primkulov et al. 2018), where wider spacing extends the cooperative
pore filling regime to higher θ .

A.2. Real system
We now compare the model outcomes with experimental data from Zhao et al. (2016).
The major difference between the model and experiments is in the onset of corner flow:
corner flow is the primary mode of capillary-dominated displacement in experiments with
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Figure 15. (a) Experimental image sequences of corner flow taken from Zhao et al. (2016) demonstrate
instances where post-coating events take place before a circular portion of the corner meniscus swells to the
extent of the nearby post; (b) changes in the fraction of corner flow events as a function of θ and the fitting
parameter cparm are explored through the sweep of quasi-static simulations. The value of cparm used in this
work and corresponding transition to corner flow are highlighted in red.

h = 100 μm and θ = 7◦, while our model anticipates no corner flow for h = 100 μm
(figure 3d). In our model, corner flow is triggered when the horizontal radius of a corner
meniscus reaches a neighbouring uncoated post; this radius is marked rn in figure 3(d).
In the experiments, in contrast, neighbouring posts are frequently coated well before the
corner meniscus swells to the radius rn (figure 3d). Experiments suggest that more complex
dynamics at the scale of the contact line can trigger the transition to corner flow.

While our model is strictly applicable for micromodels with ideal surfaces, the model
can be tuned to match the experimentally observed onset of corner flow at h = 100 μm by
introducing a fitting parameter. Motivated by the observations in figure 15(a), we can either
trigger corner flow before the horizontal radius of a corner meniscus reaches rn or lower
the critical Laplace pressure of corner flow events by out-of-plane curvature multiplied
by coefficient cparm. We chose the latter approach in this study. Setting cparm > 0 triggers
earlier coating of the nearest posts through corner flow. We explore the sensitivity of our
model to cparm in figure 15(b) by reporting the fraction of corner-flow events as a function
of θ and cparm. We set cparm = 1 for the remainder of the discussion, which corresponds
to a transition from cooperative pore filling to corner flow at θ = 39◦, in agreement with
known experimental data (Zhao et al. 2016), where the transition from cooperative pore
filling to corner flow takes place somewhere between 7◦ and 60◦.

The physical mechanisms behind the earlier onset of corner flow are not yet known.
We speculate that since UV-treated NOA81 surfaces are highly hydrophilic (Levaché
et al. 2012) and not ideally smooth, micron-scale water films may be present throughout
the micromodel – between oil and the solid. This is in line with postulated film flow
through microroughness by Vizika et al. (1994), Tzimas et al. (1997) and Constantinides
& Payatakes (2000). However, since water saturation was tracked through concentration
of the dye within the injected water phase in experiments of Zhao et al. (2016), detecting
such films was not trivial. More detailed pore-scale studies are needed to fill this gap,
where either water-sensitive dye is added to NOA81 or electric conductivity is utilized to
sense pre-existing water films.
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Figure 16. Viscous-fingering simulations (Ca = 10−1 and M = 10−3) conducted on a regular triangular lattice
with varying degree of disorder ξ . (a) Black invasion patterns are in drainage (θ = 170◦), blue patterns are in
imbibition (θ = 46◦). (b) Fractal dimension Df and (c) finger width w/a are higher in imbibition across all
degrees of disorder ξ . The error bars in panels (b,c) represent standard deviation of nine realizations.

Appendix B. Impact of pore-scale disorder on displacement patterns

Displacement patterns in each principal flow regime outlined in § 3 interact with pore-scale
disorder. We document this dependence briefly below.

B.1. Stable displacement
When Ca is sufficiently high and M 
 1, the displacement pattern becomes insensitive
to both wettability (given θ > 45◦) and disorder. The pattern is insensitive to wettability
because viscosity dominates capillarity at high Ca, and the pattern is insensitive to disorder
because viscosity stabilizes the small perturbations from disorder.

B.2. Viscous fingering
In a circular Hele-Shaw cell without obstacles, the most unstable wavelength λ of the
instability follows (Saffman & Taylor 1958)

λ

h
= π

√
M

Ca(1 − M)
, (B1)

where h is the spacing between the plates. In a radial Hele-Shaw cell, the number of
viscous fingers with thickness λ/2 increases with the radial distance from the centre as the
displacement evolves (Chen 1987, 1989).

Heterogeneity and anisotropy in the pore geometry can control the number of viscous
fingers. In general, the degree of rotational symmetry of viscous fingers in ordered
anisotropic media can be controlled by changing the post pattern. For instance, setting
a rectangular lattice pattern on one plate of a circular Hele-Shaw cell promotes four-fold
symmetry in finger growth (Chen 1987). A similar pattern occurs when posts are arranged
on a rectangular lattice (Chen & Wilkinson 1985). The simulations in figure 16 reproduce
the results of the seminal work of Chen & Wilkinson (1985), but on a triangular lattice.
As ξ increases from 0 to 1, the invasion pattern moves away from the sixfold symmetry
imposed by the lattice (figure 16a) (Holtzman 2016). The fractal dimension remains within
the range 1.61 < Df < 1.73, consistent with experiments (Chen & Wilkinson 1985; Måløy
et al. 1985), while the finger width ranges from two to five pores (2 < w/a < 5).
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Figure 17. Capillary-dominated simulations (Ca = 10−7 and M = 1) conducted on a regular triangular lattice
with varying degree of disorder ξ . (a) Black invasion patterns are in drainage (θ = 170◦) and correspond
to invasion percolation, blue patterns are in imbibition (θ = 46◦) and correspond to cooperative pore filling.
(b) Fractal dimension Df and (c) finger width w/a are higher in imbibition across all degrees of disorder ξ . The
error bars in panels (b,c) represent standard the deviation of nine realizations.

Whether the flow cell is ordered or disordered, wettability strongly influences the
invasion patterns. Stokes et al. (1986) were the first to report that viscous fingers in
imbibition are wider than in drainage. This observation has been confirmed in subsequent
experimental studies (Trojer et al. 2015; Zhao et al. 2016; Lan et al. 2020). We observe the
same trend for all degrees of disorder: both the finger width and the fractal dimension are
consistently higher in imbibition than in drainage (figure 16b,c).

B.3. Invasion percolation
In this regime, the invading fluid preferentially enters pores with the lowest capillary
entry pressures, one at a time. This process results in incomplete displacement of the
defending fluid, which becomes trapped in clusters (figure 17, black). Both Df and
w/a of the resulting patterns remain nearly unaffected by the degree of disorder, with
1.61 < Df < 1.79 and w/a ≈ 3 (figure 17b,c). Invasion percolation requires disorder in
the throat sizes, but the actual degree of disorder does not matter when viscous forces
are negligible (Ca → 0). The lack of sensitivity of such invasion percolation patterns
to disorder is intuitive, as the pattern is ultimately determined only by the sequence in
which pores are invaded. Therefore, a porous medium with small variations in throat size
is equivalent to a porous medium with large variations in throat size – only the relative
order of the throat sizes and their locations matter in shaping the invasion percolation
fronts. Therefore, unlike most fluid–fluid displacement regimes, it is very difficult to alter
invasion-percolation patterns by imposing the order in the post lattice (see figure 17,
black). This lack of sensitivity to disorder is likely responsible for the robustness and
universality of the resulting patterns across different kinds of disordered media (Wilkinson
& Willemsen 1983; Cieplak, Maritan & Banavar 1996; Sheppard et al. 1999).

B.4. Cooperative pore filling
Cooperative pore-filling events, which tend to smooth local concavities of the
displacement front, allow patterns to be controlled by the post configuration. Slow
injection of a wetting fluid into a porous medium with a regular triangular lattice
results in a hexagonal invasion pattern (figure 17, blue). In fact, equivalents to our
crystal-like patterns in imbibition and ξ = 0.01 have been observed experimentally by
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Wettability and Lenormand’s diagram

ξ = 0.01 ξ = 0.25 ξ = 0.50 ξ = 0.75 ξ = 0.99(a) (b) (c) (d) (e)

Figure 18. Quasi-static simulations in strong imbibition (θ = 10◦) in a flow cell with a triangular post lattice
and different degrees of disorder ξ . Dark blue regions represent fully invaded pores and light blue regions
represent partially invaded pores with coated post corners.

Lenormand (1990). One can tune the displacement patterns to be squares, triangles
(Lenormand 1990), and hexagons (figure 17, blue), via the lattice structure. Increasing
ξ makes the regular structure of the invading fluid become distorted.

B.5. Corner flow
Corner flow is remarkably similar to invasion percolation in how it interacts with disorder.
While corner flow is sensitive to even mild disorder, it does not distinguish between
different degrees of disorder, much like invasion percolation. Therefore, corner flow is,
in a sense, an analogue of invasion percolation for strong imbibition and may, therefore,
possess universal features – producing robustly similar invasion pattern across different
kinds of disordered media (figure 18).
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